
1

Evolving Digital HardwareEvolving Digital Hardware
EHW Module 2008EHW Module 2008

Andy Greensted
Department of Electronics
ajg112@ohm.york.ac.uk

Lecture 3

www.bioinspired.com/users/ajg112/teaching/evoHW.shtml

2

CGPCGP
(Cartesian Genetic Programming)(Cartesian Genetic Programming)

3

CGPCGP
● Form of GP based on Acyclic directed graphs

– Re-use of nodes in graph.

● Fixed genotype length

– List of integers encoding nodes and connection in
graph.

● Bounded variable length phenotype

– Not all nodes are connected.

Cartesian Genetic Programming. J. Miller and P. Thomson,Proceedings of the 3rd
European Conference on Genetic Programming, Edinburgh, (2000) 121-132.

4

CGP Evolution StrategyCGP Evolution Strategy
● CGP uses a (1+4) evolution strategy

● Generations are created from:

– The current fittest, unless a new equally fit or fitter
solution has been found.

– Mutations of the fittest from the previous generation.

Fitter individuals have lower fitness score

5

Example Circuit in CGP RepresentationExample Circuit in CGP Representation

6

CGP Encoding FeaturesCGP Encoding Features
● The genotype is a fixed length

● Function inputs can only connect to previous function
outputs

– Stops combinatorial loops

7

Case Study 1Case Study 1
Evolving Fault ToleranceEvolving Fault Tolerance

8

Evolved Fault ToleranceEvolved Fault Tolerance

● Use evolution to create fault-tolerant circuits.
● A circuit's fitness is based upon:

– Its ability to operate correctly under different fault
conditions.

Evolution of Fault-Tolerant and Noise-Robust Digital Designs M.Hartmann, P.C. Haddow, IEE
Proc.-Comput. Digit. Tech. Vol 151, No.4 , July 2004

F Average fitness for all environments
Cm A circuit under environment m
T The target circuit
diff() The number of different outputs bits
TPI Number of Environments

9

The Gate ModelThe Gate Model

E
1
: Input Error

E
2
: Input Error

F: Function Generator

E
3
: Output Error

N: Noise

Errors: Stuck-at errors
Floating output
Partially random output

Functions: NOR, NAND, OR, AND, NOT, VCC & GND

10

The Gate ModelThe Gate Model
● The model for a NOR gate

InA InB NOR

0 0 1
0 1 0
1 0 0
1 1 0

(0,1)

(0,0)

(1,0)

(1,1)

11

Target CircuitsTarget Circuits
● Both 2bit Adders and Multipliers were tested

12

ResultsResults

● Average fitness of circuits against
applied noise level.

● Average number of used gates
against noise applied during
evolution.

● (Evolution prefers circuits with
less gates as noise level
increases, this reduces the
likelihood of error)

13

Case Study 2Case Study 2
RISARISA

14

The Reconfigurable Integrated System The Reconfigurable Integrated System
Array (RISA) ArchitectureArray (RISA) Architecture

● A new embryonic tissue

– Processor/FPGA Array

● Supports Different Configurations:

– Processor Array

● Systolic Arrays
– FPGA

● Normal FPGA Applications
– Processor/FPGA Array

● Intrinsic reconfiguration
● Seamless creation of larger array

by connecting devices

15

RISA FPGA Fabric RISA FPGA Fabric

● The RISA FPGA Fabric
provides a platform for
combinatorial circuit
evolution

16

RISA FPGA Fabric - Function UnitRISA FPGA Fabric - Function Unit

● Function Generator

– 4 input LUT

– 4x1 RAM Block

– Variable length Shift
Register

● Full Adder Gates

● Dedicated Multiplexor

● D Flip Flop

● Carry Chain

● Shift Chain

17

FabricationFabrication
● Each device contains 1 RISA

cell

– 6x6 Cluster FPGA Fabric

– 6 IO Blocks per side

– 1 SNAP core

– 16kB Memory (8192 16b
words)

● 180nm process

● 5x5mm die area

● Cell based ASIC

18

First Experiments using theFirst Experiments using the
RISA PlatformRISA Platform

● Xilinx Spartan-3E device connected under RISA device

– Able to apply test vectors to RISA device

– The spartan controls RISA configuration

19

Evolving a simple digital circuitEvolving a simple digital circuit
● A simple evolvable hardware experiment for testing the device

– Evolution of a 4 bit parity generator (Both even and odd parity)

● Evolutionary algorithm runs on a Microblaze core within the
Spartan FPGA

● Candidate solutions loaded into RISA FPGA fabric and test
vectors applied through RISA IO Blocks

20

Fitness CurvesFitness Curves

● Population Size: 32

● Tournament size: 4

● Mutation rate:
(1,2,4)/256

● Elitism

Extrinsic Evolvable Hardware on the RISA Architecture, Andrew Greensted and Andy Tyrrell, ICES 2007, LNCS Evolvable
Systems: From Biology to Hardware, 4684:244-255, Wuhan, China, September 2007

21

Case Study 3Case Study 3
Tone DiscriminatorTone Discriminator

22

Thompson's Tone DiscriminatorThompson's Tone Discriminator

● Adrian Thompson (Sussex University)

● The aim was to evolve a digital circuit that could discriminate
between two frequencies of a signal input to the system.

● The experiment was conducted in 1996

An Evolved Circuit, Intrinsic in Silicon, Entwined with Physics. Adrian Thompson,
1st International Conference on Evolvable Systems 1996, (c) Springer Verlag 1997

23

Thompson's Tone DiscriminatorThompson's Tone Discriminator

 A Xilinx XC6216 was used to evolve the tone discriminator.
● No clock input signal was used.

● Therefore there was no timing reference
● The evolved circuit had to discriminate between a 1KHz and

10KHz input signal.
● The area used by evolution was limited to a 10x10 array of cells

in one corner. 100 out of the device's 4096 cells.

24

Tone Discriminator ResultsTone Discriminator Results

● Signal propagation time in the
XC6216 technology is in the order
of nanoseconds.

● The circuit was still able to
discriminate between signals with
periods in the order of milliseconds

25

Tone Discriminator ResultsTone Discriminator Results
A successful individual (after 5000 generations).

● The left hand image shows the cell connectivity for the full 10x10 array.
● The right hand image shows the cells required for correct operation.
● The cells shaded grey contain no connected logic, but their

configuration is required for correct operation.
● The solution was very device and environment dependent.

26

Tone Discriminator ResultsTone Discriminator Results

(Low Freq)(High Freq)

Increasing
Temperature

27

Case Study 4Case Study 4
Prime Number GeneratorPrime Number Generator

28

The CompetitionThe Competition
● GECCO 2006 (Genetic and Evolutionary Computation Conference)

Consecutive Primes Competition

Evolve a polynomial with integer coefficients such that given
an integer value i as input produces the ith prime number, p(i),
for the largest possible value of i.

So, if f(i) is the evolved function, we expect:
f(1)=2,
f(2)=3,
f(3)=5,
f(4)=7,
f(5)=11, etc...

29

Prime Generating FunctionsPrime Generating Functions

Y

N

Y

N

Y

All
Positive

Y

N

Y

Y

Y

All Integer
coefficients?

23

57

41

45

40

Len

44546738095860i +
56211383760397

(i5 - 133i4 + 6729i3 - 158379i2

+ 1720294i - 6823316)/4

i5 - 61i4 + 1339i3 - 12523i2 +
42398i + 11699

36i2 – 810i + 2753

i2 + i + 41

Polynomial

Frind,
Jobling,

Underwood

Sunder
Gupta

Wroblewski,
Meyrignac

Ruby,
Fung

Euler

Discoverer

The best so far...

30

Adapting to CGPAdapting to CGP
Convert polynomial to a boolean form:

p(i) = bm2m + bm-12m-1 + ... + b424 + b323 + b222 + b121 + b020

Each coefficient is a function of the binary values of the input
prime number:

bm = fm(a0, a1, …, an)

...

b1 = f1(a0, a1, …, an)

b0 = f0(a0, a1, …, an)

● Multi-Chromosome CGP was used:
● Essentially one instance of CGP per coefficient.

● Available operations:
● AND NAND, OR, NOR, XOR, XNOR, AND (!in

0
), OR (!in

0
)

Where:
a ∈ {0,1}
b ∈ {0,1}

31

16 Consecutive Primes16 Consecutive Primes

b5 = a0 + a1a2 – 2a0a1a2

b4 = -((a1(2a2 - 1) - a2)(1 + a2(a3a4 - 1))) + a0(1 - 2a2 + a2
2(2 - 2a3a4) + 2a1(2a2 - 1)(1 +

a2(a3a4 - 1)))

b3 = a2(a3 + a4 - 2a3a4) + a1a3(1 + a2(2a3a4 - a3 - a4))

b2 = 1 - a3 - a4 + 2a3
2a4 - 2a2

4(2a3 - 1)3(a4 - 1)a4 + 2a3a4
2 - 2a3

2a4
2 - a2

2(2a3 - 1)(a3(2 - 6a4) +

(3 - 2a4)a4 + 6a3
2(a4 - 1)a4) + a2

3(1 - 2a3)2(1 - (1 + 6a3)a4 + (6a3 -2)a4
2) + a2(2a3

3(a4 - 1)a4

+ 2a4
2 + a3(2 + 5a4 - 8a4

2) + a3
2(1 - 9a4 + 6a4

2) - 1) + a1(1 - a2a3 + a2
2(2a3 - 1))(2a3 + 2a4

-1 - a3a4 - 2a3
2a4 + 2a2

4(2a3 - 1)3(a4 - 1)a4 - 2a3a4
2 + 2a3

2a4
2 + 2a2

2(2a3 - 1)(a3(2 - 4a4) -

(a4 - 2)a4 + 3a3
2(a4 - 1)a4) - 2a2

3(1 - 2a3)2(1 - (1 + 3a3)a4 + (3a3 - 1)a4
2) - a2(a4 - 2 +

2a3
3(a4 - 1)a4 + 2a4

2 + a3(4 + 4a4 - 8a4
2) + 2a3

2(1 - 5a4 + 3a4
2)))

b1 = 1 - a3 + a3
2 - a2a3

2 - a1(a2(1 + a3
2 + a3(a4 - 3)) + a3

2(1 - 2a4) + a2
2a3(2a3 - 1)(a4 - 1)) -

a3
2a4 + a2a3

2a4 + a1
2(a2 - 1)a2a3(2a3 - 1)(2a4 - 1) - a0(2a1a2 - 1)(a3 - 1)(1 + (a2 - 1)a3(1 - a4

+ a1(2a4 - 1)))

b0 = a2 - a0(a1 - 1)(a2 - 1)(a3 - 1) + a1(a2 - 1)(a3 - 1) + a3 - a2a3

p(i) = b525 + b424 + b323 + b222 + b121 + b020 where

These equations have been simplified from their boolean
operation form.

32

16 Consecutive Primes16 Consecutive Primes

