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CGPCGP
(Cartesian Genetic Programming)(Cartesian Genetic Programming)
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CGPCGP
● Form of GP based on Acyclic directed graphs

– Re-use of nodes in graph.

● Fixed genotype length

– List of integers encoding nodes and connection in 
graph.

● Bounded variable length phenotype

– Not all nodes are connected.

Cartesian Genetic Programming. J. Miller and P. Thomson,Proceedings of the 3rd 
European Conference on Genetic Programming, Edinburgh, (2000) 121-132.
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CGP Evolution StrategyCGP Evolution Strategy
● CGP uses a (1+4) evolution strategy

● Generations are created from:

– The current fittest, unless a new equally fit or fitter 
solution has been found.

– Mutations of the fittest from the previous generation.

Fitter individuals have lower fitness score



5

Example Circuit in CGP RepresentationExample Circuit in CGP Representation
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CGP Encoding FeaturesCGP Encoding Features
● The genotype is a fixed length

● Function inputs can only connect to previous function 
outputs

– Stops combinatorial loops
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Case Study 1Case Study 1
Evolving Fault ToleranceEvolving Fault Tolerance
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Evolved Fault ToleranceEvolved Fault Tolerance

● Use evolution to create fault-tolerant circuits.
● A circuit's fitness is based upon:

– Its ability to operate correctly under different fault 
conditions.

Evolution of Fault-Tolerant and Noise-Robust Digital Designs M.Hartmann, P.C. Haddow, IEE 
Proc.-Comput. Digit. Tech. Vol 151, No.4 , July 2004

F Average fitness for all environments
Cm A circuit under environment m
T The target circuit
diff() The number of different outputs bits
TPI Number of Environments
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The Gate ModelThe Gate Model

E
1
: Input Error

E
2
: Input Error

F: Function Generator

E
3
: Output Error

N: Noise

Errors: Stuck-at errors
Floating output
Partially random output

Functions: NOR, NAND, OR, AND, NOT, VCC & GND



10

The Gate ModelThe Gate Model
● The model for a NOR gate

InA InB NOR

0 0 1
0 1 0
1 0 0
1 1 0

(0,1)

(0,0)

(1,0)

(1,1)
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Target CircuitsTarget Circuits
● Both 2bit Adders and Multipliers were tested
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ResultsResults

● Average fitness of circuits against 
applied noise level.

● Average number of used gates 
against noise applied during 
evolution.

● (Evolution prefers circuits with 
less gates as noise level 
increases, this reduces the 
likelihood of error)
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Case Study 2Case Study 2
RISARISA
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The Reconfigurable Integrated System The Reconfigurable Integrated System 
Array (RISA) ArchitectureArray (RISA) Architecture

● A new embryonic tissue

– Processor/FPGA Array

● Supports Different Configurations:

– Processor Array

● Systolic Arrays
– FPGA

● Normal FPGA Applications
– Processor/FPGA Array

● Intrinsic reconfiguration
● Seamless creation of larger array 

by connecting devices
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RISA FPGA Fabric RISA FPGA Fabric 

● The RISA FPGA Fabric 
provides a platform for 
combinatorial circuit 
evolution
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RISA FPGA Fabric - Function UnitRISA FPGA Fabric - Function Unit

● Function Generator

– 4 input LUT

– 4x1 RAM Block

– Variable length Shift 
Register

● Full Adder Gates

● Dedicated Multiplexor

● D Flip Flop

● Carry Chain

● Shift Chain
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FabricationFabrication
● Each device contains 1 RISA 

cell

– 6x6 Cluster FPGA Fabric

– 6 IO Blocks per side

– 1 SNAP core

– 16kB Memory (8192 16b 
words)

● 180nm process

● 5x5mm die area

● Cell based ASIC
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First Experiments using theFirst Experiments using the
RISA PlatformRISA Platform

● Xilinx Spartan-3E device connected under RISA device

– Able to apply test vectors to RISA device

– The spartan controls RISA configuration
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Evolving a simple digital circuitEvolving a simple digital circuit
● A simple evolvable hardware experiment for testing the device

– Evolution of a 4 bit parity generator (Both even and odd parity)

● Evolutionary algorithm runs on a Microblaze core within the 
Spartan FPGA

● Candidate solutions loaded into RISA FPGA fabric and test 
vectors applied through RISA IO Blocks



20

Fitness CurvesFitness Curves

● Population Size: 32

● Tournament size: 4

● Mutation rate: 
(1,2,4)/256

● Elitism

Extrinsic Evolvable Hardware on the RISA Architecture,  Andrew Greensted and Andy Tyrrell,  ICES 2007, LNCS Evolvable 
Systems: From Biology to Hardware, 4684:244-255,  Wuhan, China,  September 2007  
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Case Study 3Case Study 3
Tone DiscriminatorTone Discriminator
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Thompson's Tone DiscriminatorThompson's Tone Discriminator

● Adrian Thompson (Sussex University)

● The aim was to evolve a digital circuit that could discriminate 
between two frequencies of a signal input to the system.

● The experiment was conducted in 1996

An Evolved Circuit, Intrinsic in Silicon, Entwined with Physics. Adrian Thompson, 
1st International Conference on Evolvable Systems 1996, (c) Springer Verlag 1997
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Thompson's Tone DiscriminatorThompson's Tone Discriminator

 A Xilinx XC6216 was used to evolve the tone discriminator.
● No clock input signal was used.

● Therefore there was no timing reference
● The evolved circuit had to discriminate between a 1KHz and 

10KHz input signal.
● The area used by evolution was limited to a 10x10 array of cells 

in one corner. 100 out of the device's 4096 cells.



24

Tone Discriminator ResultsTone Discriminator Results

● Signal propagation time in the 
XC6216 technology is in the order 
of nanoseconds.

● The circuit was still able to 
discriminate between signals with 
periods in the order of milliseconds
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Tone Discriminator ResultsTone Discriminator Results
A successful individual (after 5000 generations).

● The left hand image shows the cell connectivity for the full 10x10 array.
● The right hand image shows the cells required for correct operation.
● The cells shaded grey contain no connected logic, but their 

configuration is required for correct operation.
● The solution was very device and environment dependent.
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Tone Discriminator ResultsTone Discriminator Results

(Low Freq)(High Freq)

Increasing
Temperature
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Case Study 4Case Study 4
Prime Number GeneratorPrime Number Generator
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The CompetitionThe Competition
● GECCO 2006 (Genetic and Evolutionary Computation Conference) 

Consecutive Primes Competition 

Evolve a polynomial with integer coefficients such that given 
an integer value i as input produces the ith prime number, p(i), 
for the largest possible value of i.

So, if f(i) is the evolved function, we expect:
f(1)=2,
f(2)=3,
f(3)=5,
f(4)=7,
f(5)=11, etc...
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Prime Generating FunctionsPrime Generating Functions

Y

N

Y

N

Y

All
Positive

Y

N

Y

Y

Y

All Integer 
coefficients?

23

57

41

45

40

Len

44546738095860i + 
56211383760397

(i5 - 133i4 + 6729i3 - 158379i2 

+ 1720294i - 6823316)/4

i5 - 61i4 + 1339i3 - 12523i2 + 
42398i + 11699

36i2 – 810i + 2753

i2 + i + 41

Polynomial

Frind, 
Jobling, 

Underwood

Sunder 
Gupta

Wroblewski, 
Meyrignac

Ruby, 
Fung

Euler

Discoverer

The best so far...
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Adapting to CGPAdapting to CGP
Convert polynomial to a boolean form:

p(i) = bm2m + bm-12m-1 + ... + b424 + b323 + b222 + b121 + b020

Each coefficient is a function of the binary values of the input 
prime number:

bm = fm(a0, a1, …, an)

...

b1 = f1(a0, a1, …, an)

b0 = f0(a0, a1, …, an)

● Multi-Chromosome CGP was used:
● Essentially one instance of CGP per coefficient.

● Available operations:
● AND NAND, OR, NOR, XOR, XNOR, AND (!in

0
), OR (!in

0
)

Where:
a ∈ {0,1}
b ∈ {0,1}
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16 Consecutive Primes16 Consecutive Primes

b5 = a0 + a1a2 – 2a0a1a2

b4 = -((a1(2a2 - 1) - a2)(1 + a2(a3a4 - 1))) + a0(1 - 2a2 + a2
2(2 - 2a3a4) + 2a1(2a2 - 1)(1 + 

a2(a3a4 - 1)))

b3 = a2(a3 + a4 - 2a3a4) + a1a3(1 + a2(2a3a4 - a3 - a4)) 

b2 = 1 - a3 - a4 + 2a3
2a4 - 2a2

4(2a3 - 1)3(a4 - 1)a4 + 2a3a4
2 - 2a3

2a4
2 - a2

2(2a3 - 1)(a3(2 - 6a4) + 

(3 - 2a4)a4 + 6a3
2(a4 - 1)a4) + a2

3(1 - 2a3)2(1 - (1 + 6a3)a4 + (6a3 -2)a4
2) + a2(2a3

3(a4 - 1)a4 

+ 2a4
2 + a3(2 + 5a4 - 8a4

2) + a3
2(1 - 9a4 + 6a4

2) - 1) + a1(1 - a2a3 + a2
2(2a3 - 1))(2a3 + 2a4 

-1 - a3a4 - 2a3
2a4 + 2a2

4(2a3 - 1)3(a4 - 1)a4 - 2a3a4
2 + 2a3

2a4
2 + 2a2

2(2a3 - 1)(a3(2 - 4a4) - 

(a4 - 2)a4 + 3a3
2(a4 - 1)a4) - 2a2

3(1 - 2a3)2(1 - (1 + 3a3)a4 + (3a3 - 1)a4
2) - a2(a4 - 2 + 

2a3
3(a4 - 1)a4 + 2a4

2 + a3(4 + 4a4 - 8a4
2) + 2a3

2(1 - 5a4 + 3a4
2)))

b1 = 1 - a3 + a3
2 - a2a3

2 - a1(a2(1 + a3
2 + a3(a4 - 3)) + a3

2(1 - 2a4) + a2
2a3(2a3 - 1)(a4 - 1)) - 

a3
2a4 + a2a3

2a4 + a1
2(a2 - 1)a2a3(2a3 - 1)(2a4 - 1) - a0(2a1a2 - 1)(a3 - 1)(1 + (a2 - 1)a3(1 - a4 

+ a1(2a4 - 1))) 

b0 = a2 - a0(a1 - 1)(a2 - 1)(a3 - 1) + a1(a2 - 1)(a3 - 1) + a3 - a2a3

p(i) = b525 + b424 + b323 + b222 + b121 + b020   where

These equations have been simplified from their boolean
operation form.
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16 Consecutive Primes16 Consecutive Primes


