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Evolution Overview
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 Evolvable hardware uses the principle of Darwinian
Evolution to create electronic circuits.

 The important factors are:

- Representation
- Fitness Evaluation
- Evolutionary Operators




Motivation - Why use EHW

Increasing complexity
— More transistors
— Greater Density

Intel® Core™2 Extreme

Quad-core Processor
(= 580 Million Transistors)

Can evolution help
with the complexity
problem?

* The development of electronic circuits has so far closely followed
Moore's Law
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What do we mean by
Evolving Digital Hardware 1

You can use evolution to search the parameter space of
digital circuits.
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The gain of the multiplier stages provide a set of parameters
that can be adjusted using an evolutionary process.

However, evolution just using parameter optimisation is
limited by the scope of the fixed circuit structure.




What do we mean by
Evolving Digital Hardware 1

e Evolution is quite good at performing parameter
optimisation. Usually the search space is quite small.

However

 Normally the operation of a human designed circuit is
understood.

 Formulae are available to determine the required
parameters for a particular set of circuit characteristics.

* Therefore, do we need evolution to find new parameter
configurations?




What do we mean by
Evolving Digital Hardware 2

Evolution can also be used to create whole circuits, controlling the
selection and connectivity of electronic components.
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In digital circuits, this is normally logic gates. Evolution can find novel
circuits, from which new design techniques can be learnt.

It is also possible to evolve the parameters of these gates:
- Output drive strength
- Output switching speed

Although, these aren't normally taken into consideration.

As the evolution of component choice & connectivity of digital
circuits can potentially create novel circuits it is the more widely
researched approach.




Intrinsic & Extrinsic Evolution

* A major choice in EHW is whether fithess
evaluation is performed using a real circuit or
simulation:

- Intrinsic - Fitness evaluation using the target
circuitry

— Extrinsic - Fithess evaluation in simulation




Extrinsic (Simulation) Evolution

 Can be simpler to add the fitness evaluation
stage in the evolution loop

* Can be more flexible, easier to try different
circuit configurations

» Safer, no chance of destroying hardware by
testing 'bad' candidate solutions




Intrinsic (In Hardware) Evolution

* No problems with moving a simulated
solution into hardware.

* Evolution can be allowed to take advantage
of the 'physics’ of the target circuitry.

* For larger circuits, it could be faster
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Evolution of a Simple Circuit
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The evolved circuits are of equal complexity as traditional full
adders. There is no real advantage in their use.




An Evolved 2bit Adder
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Depending on the implementation, multiplexers
can contain more transistors, making the evolved circuits larger.




3 bit Multiplier
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In this case evolution has found a solution that is potentially
useful. However, the largest evolved multiplier contains only
100s of transistors, no way near the 580 Million of a human
designed processor.




Pseudo Random Number Generator

Random Bits

e Cellular automata based random number
generator

« 8x8 cell array

e Each cell is a 4 Input
registered lookup table

« Evolved next state logic HEEEEE
and cell connections EEEEEREEN
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FPGA Implementation of Neighborhood-of-Four Cellular Automata Random Number Generators
Barry Shackleford, Motoo Tanaka, Richard Carter, Greg Snider
10th International Symposium on Field Programmable Gate Arrays, Monterey, California, USA, 2002




Part 3

An Architecture for Evolving
Digital Circuits
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Digital Basics
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Sequential circuits use a clock to drive data between

registers. Logic gates between registers operate on the data.
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Most digital circuits are constructed using this format.
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Example Digital Circuits

Output
Logic

Finite State
Machine

Microprocessor

These all follow
the register and
logic structure




RAM, LUTs and Logic Tables

How can we make configurable combinatorial circuits?

First, how can we make configurable gates?
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The same functionality of gates can be constructed
using small blocks of RAM. The contents of the RAM
defines the logic function. RAM used in this way is
often referred to as a Lookup Table (LUT).




Circuit Connections
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A Configurable Cell

Cell Inputs

Circuit Logic

Mux

\ Connectivity Function
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17 bit Configuration Register

This configurable cell has a 3 input LUT, each LUT input
can be connected to one of a selection of 8 cell inputs.




A Configurable Combinatorial Circuit

dlno Cell Cell
din1 Cell Cell
dinz Cell Cell
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An array of configurable cells, 8 rows, 4 columns (32 Cells)

32 * 17 = 544 configurable bits
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The 2 bit adder uses just 4 cells for the adding circuit, 9 others

Evolution of a 2 bit adder
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Is EHW up to the Task?
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Pentium 4 dle (about 50 million transistors)
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| However, how easy

would it be to evolve a
circuit as complex as
this?

Could evolution take
care of:

- Connectivity

- Component choice

- Power Consumption
- Clock Distribution

- Fan out/in

- Power Distribution

- Cross talk

- Fault Tolerance
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. The Difficulty of Evolving Large Circuits

2 Bit Adder? W

*Evolution of complex things
takes a long time, with a lot of
iIntermediate stages.

*The goal of evolution wasn't to
create a human.

*You can't go from start to finish
In one step.
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