Evolving Digital Hardware
EHW Module 2008

Andy Greensted
Department of Electronics
ajg112@ohm.york.ac.uk

www.bioinspired.com/users/ajg112/teaching/evoHW.shtml

Lecture 1




Lecture Overview

Lecture 1
— An introduction to evolving digital circuits
Lecture 2

- Overview of the labs
- FPGAs and their role in EHW

Lecture 3

- CGP
— Case studies 1

Lecture 4
- Case studies 2




Evolution Overview

Create
Random
Population
(Representation)
Evaluate
~ Population Create next population
(Fithess Evaluation) applying evolution operators
¢ (Evolutionary Operators)
Check for solution J
Solution

 Evolvable hardware uses the principle of Darwinian
Evolution to create electronic circuits.

 The important factors are:

- Representation
- Fitness Evaluation
- Evolutionary Operators




Motivation - Why use EHW

Increasing complexity
— More transistors
— Greater Density

Intel® Core™2 Extreme

Quad-core Processor
(= 580 Million Transistors)

Can evolution help
with the complexity
problem?

* The development of electronic circuits has so far closely followed
Moore's Law

4004 ¢

¢ 80386DX

80486DX ¢8

Moore's
Predicted Trend

Pentium I1I

N0

Jan 2000

Jan 1975 Jan 1980  Jan 1985 Jan 1990  Jan 1995

Year of Introduction

Moore's Law




What do we mean by
Evolving Digital Hardware 1

You can use evolution to search the parameter space of
digital circuits.

|N Z-1 Z-1 Z-‘I Z-1
GO G1 G2 G3 G4
& N\, ) N\ OuT
lIR Digital Filter

The gain of the multiplier stages provide a set of parameters
that can be adjusted using an evolutionary process.

However, evolution just using parameter optimisation is
limited by the scope of the fixed circuit structure.




What do we mean by
Evolving Digital Hardware 1

e Evolution is quite good at performing parameter
optimisation. Usually the search space is quite small.

However

 Normally the operation of a human designed circuit is
understood.

 Formulae are available to determine the required
parameters for a particular set of circuit characteristics.

* Therefore, do we need evolution to find new parameter
configurations?




What do we mean by
Evolving Digital Hardware 2

Evolution can also be used to create whole circuits, controlling the
selection and connectivity of electronic components.

D D D ot~ FF

— | —P>

In digital circuits, this is normally logic gates. Evolution can find novel
circuits, from which new design techniques can be learnt.

It is also possible to evolve the parameters of these gates:
- Output drive strength
- Output switching speed

Although, these aren't normally taken into consideration.

As the evolution of component choice & connectivity of digital
circuits can potentially create novel circuits it is the more widely
researched approach.




Intrinsic & Extrinsic Evolution

* A major choice in EHW is whether fithess
evaluation is performed using a real circuit or
simulation:

- Intrinsic - Fitness evaluation using the target
circuitry

— Extrinsic - Fithess evaluation in simulation




Extrinsic (Simulation) Evolution

 Can be simpler to add the fitness evaluation
stage in the evolution loop

* Can be more flexible, easier to try different
circuit configurations

» Safer, no chance of destroying hardware by
testing 'bad' candidate solutions




Intrinsic (In Hardware) Evolution

* No problems with moving a simulated
solution into hardware.

* Evolution can be allowed to take advantage
of the 'physics’ of the target circuitry.

* For larger circuits, it could be faster




11

ts

ircul

Part 2
Examples of Evolved C




Evolution of a Simple Circuit

A ——)
* S
A — ° 7
n_| Ful =8 ¢ i
Adder | — cout
CIN - Cout
Full Adder Symbol Conventional Full Adder Circuit
Cﬁgl_ MUX MUX |— Court MUX Court
— 1
CiN

A D ) >—
Evolved Full Adders

The evolved circuits are of equal complexity as traditional full
adders. There is no real advantage in their use.




An Evolved 2bit Adder

CiNn  AoBo A1B1

E Full E Ful

Conventional 2 bit Adder
Adder L Adder _‘ | 10 Gates

So S1 Court

A1 s
Ci B1 _>_
Bo —o

MUX
B MUX | MUX — So

Ao
Bo — Ao ®

A \ ) > S MUX MUX
B —Do—

Bo

Cour

CiN ®
Evolved 2 bit Adder: 10 Gates

Depending on the implementation, multiplexers
can contain more transistors, making the evolved circuits larger.




3 bit Multiplier

— = bl = : {) L=
D% N : -
L ~ A Ly> | | .
il DJ ) ;D =
il —, | DD D -
— DD =
> ) I‘D =
- = = = -
Conventional Evolved
26 Gates 23 Gates
Maximum of 6 gate delays Maximum of 8 gate delays
Faster Circuit, but larger Smaller Circuit, but slower

In this case evolution has found a solution that is potentially
useful. However, the largest evolved multiplier contains only
100s of transistors, no way near the 580 Million of a human
designed processor.




Pseudo Random Number Generator

Random Bits

e Cellular automata based random number
generator

« 8x8 cell array

e Each cell is a 4 Input
registered lookup table

« Evolved next state logic HEEEEE
and cell connections EEEEEREEN

)
j | I | j 2n,2w
- HHEN 5l
- T

T OO

FPGA Implementation of Neighborhood-of-Four Cellular Automata Random Number Generators
Barry Shackleford, Motoo Tanaka, Richard Carter, Greg Snider
10th International Symposium on Field Programmable Gate Arrays, Monterey, California, USA, 2002




Part 3

An Architecture for Evolving
Digital Circuits

16




Digital Basics

.-l-.___.- ™ '—.\_\_\M_--\-

s

e ™

| Combinatorial L
\ Logic P,

|\ -

- lf;:-

— "

-~

Logic

r
. Combinatorial ‘-

.

dOut

_F'.-.-.-.I

Sequential circuits use a clock to drive data between

registers. Logic gates between registers operate on the data.

=D

1 - -

MUX

>0

— 1

Most digital circuits are constructed using this format.




count+1

clk —>

Register

Adder

count

Counter

dOut

I.1I

-

Input
LD%ic

clk

Next State

Logic

—

Register

s dutah (Dt
regExW o (o
FogEXWE_cph
— 1_Siog Nage0ns (SHAPTYFE_FLAGS]
cutmpBePeEn 1_fReg_condianCadedkt (SHAFTYFE_CONDITION_CODE
FiagRogistors
R Ei — s
5 E Reg wiFag: eR0Esx wnrigs L sriagen
LE e traplSRFCED e :
Inanieg -
o pe peut DL rhs L lorictioePG G Pl E—
= ehPprivatn [T ene tumhes - s — TR vl I
3 ’ s ondtanCodusEn o e
o banRugEn = -
. o rosDEE R Musmd » . 1891y ) condiientosaln
LI iAot ToODEEX IntemupReauest G iiFisasiEn o= e
IOFEDE kenType ToDEEX InanTipe
[GET P
e EDE rerEratin TR kst T
e EDE_condiions PGDEE_pondionsd ] controtior uf
wFEDE tagsor DB taggt ) Bl§
FEDE witaBack FSDEEK wibaBiacs HH
2 2 o wibsEschEn IOEIWE wrtaBackEn
i H TOREX ponitionCose
3 i
14
——
roFEDE oxcose TogOEER opcaas
foFEDE oon
| raoeex opn s e
= 2
— eot & = 5
3291 P W I} ;‘
a - 5
- PO L 3 :
— _ RF reqFECE_cpBi 15} GDEEX, skpNurtian o & i a8
- 0| mem_dDu ! nenia115) % o reqFECE coB(1a) ToRDEEX irtSate H =
I i 2 H u
2 mamaoryhas H perfifen &
5 P
H ouLy = H
p {1501 i FogEXNE, duin porskDin .
I
A O portAncu | L EEADO TosDEEX duiah
B rl_portiddd
i oFEDE oo £ i
H [
i ponBOcu (1 porBilow reeDEEX duafi dmaOut
H 1FEDE ooio) "
§ regFEDE o ForwardB5alect
5 —e e 2 e
i = T
i =
H]
regEXWE_aais
mem_sut U a x 7 £
ik GABSNAPTYPE VM ADCvargel s i °
H
A P H
= i g
g B i B -
i 5 : i
E g § o
§ 5
13 i H H
£ H 1 H

Example Digital Circuits

Output
Logic

Finite State
Machine

Microprocessor

These all follow
the register and
logic structure




RAM, LUTs and Logic Tables

How can we make configurable combinatorial circuits?

First, how can we make configurable gates?

v o giDmD_Q

ABlQ A B ClQ
000 0000
0 1|0 00 1|1 A—
1.0(0 0100 __|8xibit |
1111 01 1[1 => g_RA'V' .
1.0 00
1.0 1|1
11 01
11110

The same functionality of gates can be constructed
using small blocks of RAM. The contents of the RAM
defines the logic function. RAM used in this way is
often referred to as a Lookup Table (LUT).




Circuit Connections

dino — ——

A B C|dOut
dint 0 0 0]dlno
din2 — 0 0 1|din
dins —  dout 0 1 0|din:
dins — 01 1|dna
dins — 1 0 0] din
dine — 1 0 1|dins
din7 — 1 1 0|dlne

m 1 1 1ldin7
nse S04
An 8 to 1 multiplexer —
8
This component allows one  dIn e ﬂﬁl ——— dOut
of a selection of inputs to be

connected to the output. "\I\’g




A Configurable Cell

Cell Inputs

Circuit Logic

Mux

\ Connectivity Function
8 | o1

LUT

8x1bit
RAM

— dOut

8to1
Mux

17 bit Configuration Register

This configurable cell has a 3 input LUT, each LUT input
can be connected to one of a selection of 8 cell inputs.




A Configurable Combinatorial Circuit

dlno Cell Cell
din1 Cell Cell
dinz Cell Cell
dins Cell Cell
dIn4 Cell Cell
dins Cell Cell
dins Cell Cell
din? Cell Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell

Cell  dOuto
Cell  dOuts
Cell | dOutz
Cell dOuts
Cell F dOuts
Cell F dOuts
Cell F dOuts
Cell  dOut7

An array of configurable cells, 8 rows, 4 columns (32 Cells)

32 * 17 = 544 configurable bits




Cin

Ao

A1

Bo

B1

The 2 bit adder uses just 4 cells for the adding circuit, 9 others

Evolution of a 2 bit adder

Sum
Circuit

| So—

‘--_-_-_'_""‘-—-.

| _]

X

Car
Circuit

------"""--.

CI

Sum
Circuit

| ST —

=<

-‘----""'"--.

Carry

Circuit

| Cout -

_.—-'""“‘:
L —
_..rr""'rr:

4__.--"'".".‘:
—
—_— —
—
—
—
—
—

—
—

—
— —
—

—
PR —
—

—
b —
—

being used for routing.

----—-_-_""‘-—-.

H_---_'_""‘---.

-
—

11

| 11

| 1]

L 11

— 1".:rr'Cilul




Is EHW up to the Task?

e ; . Il ] AR
[ Tl . I 12 . ¥
NN 1 I -l M
_,__‘ _-_- _.- i g =] :‘

I’!
o R JE
»n
B
'.lip
b
-’

|_,.. | iﬁf';.,i

e v 182

Pentium 4 dle (about 50 million transistors)

L]
-
» 2 - T L
ialalalalaiale oplaleleinds Wﬂmmnﬁ ez e ———— i T B

| However, how easy

would it be to evolve a
circuit as complex as
this?

Could evolution take
care of:

- Connectivity

- Component choice

- Power Consumption
- Clock Distribution

- Fan out/in

- Power Distribution

- Cross talk

- Fault Tolerance

24




. The Difficulty of Evolving Large Circuits

2 Bit Adder? W

*Evolution of complex things
takes a long time, with a lot of
iIntermediate stages.

*The goal of evolution wasn't to
create a human.

*You can't go from start to finish
In one step.

Penti 47
entium o5




